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Abstract:  Conditional models arise in chemical engineering when modeling systems involve

physicochemical discontinuities, such as phase transitions.  Zaher (1993) and Grossmann and

Turkay (1996) show that one can represent conditional models as an algebraic system of

disjunctive equations. This work proposes a new complementarity formulation for the

representation of algebraic systems of disjunctive equations. This formulation not only

establishes the complementarity condition among equations belonging to different disjunctive

terms but also enforces simultaneous satisfaction of all of the equations in the same

disjunctive term. This approach represents an alternative to MILP formulations, avoiding

discrete decisions;  it also avoids the need for special  procedural nonlinear techniques as

required by the boundary crossing algorithm (Zaher, 1991). We identify the disadvantages

associated with the proposed formulation.  Solving the resulting nonlinear system of

equations relies on the assumption of nondegeneracy of the solution to the complementarity

equations.  The proposed complementarity representation performed reliably on several

example problems where the number of equations in each disjunctive term is small.

Keywords: Conditional models, algebraic system of disjunctive equations, complementarity

formulation.
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1 INTRODUCTION

The design and simulation of  engineering  processes require one to find the solution to a

large system of linear and/or nonlinear equations. This work is particularly concerned with the

solution of conditional models. Conditional models exist when the defining equations of the

system depend on where the model solution lies. A conditional model consists of a system of

equations expressed by two sets: a globally defined invariant set of equations and a variant (or

locally defined) set of conditional equations which are expressed as disjunctions. Zaher(1993) and

Grossmann and Turkay (1996) have already shown that this problem reduces to representing and

finding the solution to the system of disjunctive equations:

whereh(x) and  represent the invariant and the variant sets of equations respectively,K

represents the set of disjunctions and the indexi is used to indicate thei-th term in each

disjunctionDk. The vectorh(x) is m-dimensional, and it is assumed that  isβk-dimensional

and that  isγk-dimensional, for alli in Dk.  The equationsh(x) can be said to be defined over

the entire feasible region, while the inequalities  define the domain of validity of each variant

set of equations . In that way, each variant set of equations is confined to some subregion

resulting from the dissection of the feasible region (Zaher, 1991). The solution to the system will

be given by the vector satisfying the invariant seth(x) and exactly one set of equations for each

of the disjunctions, providing that the corresponding set of inequalities is satisfied. Grossmann

and Turkay (1996) addresses the existence and uniqueness of the solution for the linear case.

Similarly, for the nonlinear case, we may establish  that there exists a unique solution  to (1),  if

all but one term in each disjunction cannot be satisfied, that is:

Fluid transition represents the example of a conditional model commonly encountered in
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( ) 0= i î≠∀ k K∈for , , j 1…βk[ ]∈ l 1…γk[ ]∈, ,



INTRODUCTION

4

chemical engineering.  Figure 1, taken from the work of Zaher (1995), illustrates.  In this case, we

must incorporate alternative equations for the transport properties and velocity bounds within the

model, using the simultaneously calculated value of the flow type indicator (Reynolds or Mach

number) relative to some critical value to determine which is active.

FIGURE1 Fluid flow transition

It is important to recognize that modeling is a user dependent task.  Frequently, different

modelers produce different formulation for the same problem and, as a consequence, different

approaches and techniques may be used to find a solution to it.  One can formulate conditional

models as mixed-integer programming problems. See for example Grossmann and Turkay (1996).

Besides the mixed-integer formulation, some alternative approaches exist which, in principle,

could avoid the need for discrete decisions. Zaher (1991) proposed one of this approaches with

the boundary crossing algorithm. This work, however, focuses on a second approach, the

complementarity representation of conditional models.

1.1 COMPLEMENTARITY APPROACH

Over the last thirty years, the class of problems known as complementarity problems has

become increasingly popular as a tool for addressing practical problems arising in mathematical

programming, economics, engineering, and the sciences (Billups, 1995; Ferris and Pang, 1995 ).

Several works have documented the basic theory, algorithms and applications of complementarity

problems.  Dirske and Ferris (1995) give examples of how to formulate many popular problems as

mixed complementarity problems (MCP).  Billups (1995) describes the standard forms for the

different classes of complementarity problems and proposes strategies which enhances the

robustness of  Newton-based methods for solving these problems.  More (1994) formulates the

complementarity problem as a nonlinear least square problem and gives convergence properties

for his approach.  In this work, we describe an extension to the standard complementarity

formulation (Billups, 1995) for the representation of conditional models.

Laminar OR Turbulent OR Sonic
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2 PROBLEM FORMULATION

In general, the nonlinear complementarity problem is expressed as the following set of

equations and inequality constraints:

There is certain lack of symmetry in the previous formulation. One of the functions is

quite arbitrary while the other is the vector of variables. Many commonly occurring problems

have a more general form:

which is called the vertical nonlinear complementarity problem (Ferris and Pang, 1995). It is

possible, of course, to have more than two vectors of functions in the above equations:

For the case of asingle conditional equation in a disjunctive statement, Zaher,(1995) show

that there exits an equivalent representation by using a standard complementarity formulation as

follows:

A typical example of this equivalence can be found while representing the

complementarity equations arising from the Karush-Kuhn-Tucker conditions of an optimization

problem. There are also cases in which physicochemical transitions are complementary in nature

and can be represented by such a formulation. For instance, Zaher (1995) represents the adiabatic

compressible flow in a disjunctive statement with an equivalent complementarity representation:
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On the other hand, if the disjunctive statement hasmore than one equation in each

disjunctive term, as the example of the heat exchanger given also by Zaher (1995), the standard

complementarity formulation is not equivalent to the disjunctive representation:

Notice that in the disjunctive representation all the equations belonging to the same

disjunctive term have to be satisfied simultaneously, a restriction which is not represented by the

standard complementarity formulation. In the following section, we propose the representation of

disjunctive sets of algebraic equations as a complementarity problem.  The formulation described

in this paper not only establishes the complementarity condition among alternative sets of

equations, but it also enforces simultaneous satisfaction of all the equations in the solution set.  It

is important to mention that we are aware of many disadvantages associated with this

representation, but our motivation relies on the fact that a complementarity formulation only

requires the solution of one square system of nonlinear equations, avoiding all of the

complications encountered in procedural techniques such as the boundary crossing algorithm

(Zaher, 1991) and the discrete decision making of an MINLP solution. Before going further in the

description of our approach, in Figure 2 we explain the relevant terminology employed in this

paper.

2.1 COMPLEMENTARITY REPRESENTATION OF A CONDITIONAL MODEL

As in most of the complementarity approaches reported in the literature, in this paper we

assume the nondegeneracy of the solution to the complementarity problem. With this assumption
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we leave out all those cases in which equations belonging to different terms of the same

disjunctive statement are simultaneously satisfied. In addition, we will assume that the  nonlinear

problem can be represented by a functionr(x):Rn
+ Rn;  that is, we assume that we can

rearrange the equations so that the residuals of the conditional equations belonging to a non-

solution disjunctive term will always be positive.

FIGURE2 Description of our terminology

The formulation presented here is an extension of that presented by More(1994), who

reformulates the nonlinear complementarity problem (2) as:

whereP is the diagonal matrix diag(pi).

For the purpose of illustration, consider the example of the heat exchanger given by (7).
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Defining positive residuals  for each of the equations:

Representing  the disjunctive statement in terms of those residuals:

Notice that we have been arranged  the conditional equations in (9) in such a way that all the

variables  are always positive. In order to do that, we used the physical insight given by the

nature of the problem.  In term of the residuals, the standard complementarity formulation is given

by:

The disjunctive statement requires either both  and or both  and

simultaneously to be zero. That is not a restriction included in the standard complementarity

formulation (11).  We propose the following formulation to represent the disjunctive statement

instead:

Since the residuals are all positive, the set of equations in (12) not only contains the

complementarity condition given by the standard representation (11) but also enforces the

simultaneous satisfaction of all the equations defined in the same terms of the disjunction. Also, it
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is important to realize that the inequality constraints in (12) are only bounds in the residual

variables, and we can use them to guide our search for a solution to the resulting square system of

equations:

• The original disjunctive statement provides  2 equations in either of its cases.

• The complementarity formulation provides 6 equations but introduces 4 new variables, also a

net of  2 equations.

For cases in which the domain of validity is given by inequality constraints, we

reformulate the problem by adding two slacks to the inequality and express the complementarity

condition between these slack variables. Consider for example the laminar-turbulent flow

transition given by:

If we define residuals for the equalities and slack variables for the inequalities:

then the disjunctive statement in terms of residuals and slacks and, therefore, the complementarity

equations, are exactly the same as those given in the previous example. Notice that the inequalities

become an active part of the system of equations. Also, one of the complementarity equations

contains a complementarity product between the two slacks in the inequality, a requirement to

avoid multiple solutions.

The result of applying our formulation is a square system of nonlinear equations

(including complementarity equations) subject to the positiveness of the slacks and residual

variables.

The proposed complementarity representation has the following properties:

1. The number of complementarity equations is equal to the number of equations in each term of
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the disjunction to maintain the same number of degrees of freedom as in the original problem.

2. Every residual is multiplied by every residual in all of the other terms of the disjunction.

Thus, we will ensure the simultaneous satisfaction of all the equations in the disjunctive term

corresponding to the solution and, as a consequence, avoid spurious solutions to the problem.

3. In the example, there are several ways in which we could have accommodated the four

complementarity terms in the two complementarity equations. The way in which we have

distributed the bilinear terms over the complementarity equations is intended to decrease the

possibility of having numerical singularities in the Jacobian of the system while using an

iterative scheme based on Newton and quasi-Newton methods.  We must avoid having two

residual variables from the same disjunctive term being multiplied in two complementarity

equations by the same set of residual variables from another disjunctive term. Examine

Figure 3. We show a set of complementarity equations and the rows of the Jacobian

corresponding to those equations.  Note that the equations in Figure 3 contain the same four

complementarity terms as the formulation given by (12), but they are grouped differently.  In

the case presented, if the solution to the problem is , rows 1 and 2 of the

Jacobian become numerically dependent as the Newton method approaches the solution. If

,  we  could  get row 2  multiplying  row 1 by the factor .  This is not the

case for the complementarity equations given by (12).

FIGURE3 Numerical singularities in complementarity equations

In the following sections, we formally describe how to obtain a complementarity

formulation including all of the properties outlined above. While showing how to generate the

complementarity equations, we first consider the case in which the disjunctive statement contains

two terms and then we extend the analysis to any number of disjunctive terms.
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2.1.1 Representing the Disjunctive Statements in terms of Positive Residual or Slack
Variables

Before generating the set of complementarity equations, it is necessary to define positive

residual variables (or slack variables for inequalities) for the conditional equations and to

represent the disjunctive statements in terms of these positive variables. This task has to be

accomplished disregarding the number of terms in each disjunctive statement. As a matter of fact,

one of our assumptions here is that the system of equations can be rearranged to obtain this

representation. For instance, for the simplest case of one disjunction with two terms (the index k is

omitted for simplicity), given the disjunctive set of algebraic equations:

we reformulate the problem as:

2.1.2 2-Term Disjunctive Statements

Given the disjunctive statement in terms of the positive residual variables , we obtain

the set of complementarity equations by using the following:

r j
1

x( ) 0=

gl x( ) 0≤

r j
2

x( ) 0=

gl x( ) 0≥
∨

h x( ) 0=

j∀ 1…β[ ]∈

l∀ 1…γ[ ]∈
(15)

h x( ) 0=

q∀ 1…β γ+[ ]∈
pq

1
0=

pq
2

0≥

pq
2

0=

pq
1

0≥
∨

(16)

j∀ 1…β[ ]∈ l β 1…β γ+ +[ ]∈

gl x( ) pl
1

pl
2

+– 0=

r j
2

x( ) pj
2

– 0=

r j
1

x( ) pj
1

– 0=

,

pq
i



PROBLEM FORMULATION

12

Hence, the resulting nonlinear system of equations is:

Note that, not taking in account the bounds in the residual variables, the resulting nonlinear

system of equations is square.

The generation of the complementarity equations given by (17) is illustrated in Figure 4.

Basically, in a complementarity equation each residual variable of one disjunctive term is

multiplied by one residual variable of the other disjunctive term, and, for successive

complementarity equations, the order of the residual variables in the second term is successively

shifted by one.
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FIGURE4 Generation of complementarity equations in a two-term disjunction.

Every possible complementarity term resulting from the multiplication of  positive

residual variables belonging to different disjunctive terms is included in complementarity

equations (17).  This feature ensures that, in order to satisfy the complementarity equations, all

the residual variables of at least one disjunctive term have to be simultaneously zero. The proof is

simple. Assume that, in each of the disjunctive terms, there is only one nonzero residual variable.

Since all of the possible complementarity terms exist in the complementarity equations, a

complementarity term containing those residual variables must exist. Find the complementarity

term that contains just these nonzero residual variables. Since the product of those variables will

be nonnegative, that term will force the complementarity equation in which it exists to be greater
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than zero, i.e., it will not be satisfied. To be satisfied, at least one of the residual variables i the

complementarity term must be zero, contradicting our original assumption. Thus, in order to

satisfy the complementarity equations, at least one disjunctive term must have all its residual

variables equal to zero. In other  words, a complete set of conditional equations in at least one of

the disjunctive terms will be simultaneously satisfied.

As a consequence of the previous analysis, if the complete set of nonlinear equations

(including the complementarity equations) is satisfied, then the solution vector  will correspond

to a consistent solution to the conditional model. Moreover, if we assume uniqueness of the

solution, then the vector  will  be the unique solution to the conditional model.

Another property of the complementarity set of equations given by (17) is that, in every

complementarity equation, all the residual variables are incident, and each of them is incident

only once.  That is intended to decrease the possibility of having numerical singularities in the

Jacobian of the system as explained before. In fact, by analyzing the Jacobian of the formulation

(17) under the assumption of nondegeneracy of the solution, it can be shown that  the possibility

of having numerical singularities is eliminated. If nondegeneracy occurs, the residuals in the

equations of the disjunctive set not corresponding to the solution are expected to be different from

zero, and, therefore, they will provide a pivot  in the jacobian matrix for all the complementarity

equations (note that the number of positive residuals is equal to the number of complementarity

equations).

2.1.3 Generalization to any number of terms in the Disjunctive Statement

When the disjunctions contain more than two terms, we generate the complementarity

equations by applying recursively the same equation given in (17).  We assume again that we can

obtain a disjunctive statement in terms of positive residual variables. Consider the following

simple example of a disjunction with three terms:
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We apply equation (17) to the first two disjunctive terms:

and do it again for the resulting two-term disjunction:

A complementarity set of equations obtained in this form still will include the properties

outlined before for a two-term disjunction:

1. It will result in a square system of equations.

2. In order to satisfy the complementarity equations, all the equations of at least one set of

conditional equations have to be simultaneously satisfied.

3. Under the assumption of nondegeneracy, the Jacobian of the system of equations can be

shown to be nonsingular.

The reasoning employed to prove the previous statements is the same as that in the case of

a two-term disjunction discussed above.

2.1.4 About the Complementarity Formulation
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disjunction and D is the number of terms in the disjunction, the number of equations

representing the disjunctive statement in the complementarity formulation is (β+γ)(D+1). That

number includes both the complementarity equations and the equations defining the positive

residual variables.

2. The number of bilinear terms (or terms including products among variables) incorporated in

each equation also grows with the number of equations in each term of the disjunction. The

combinatorial nature of the problem is encapsulated here.

3. The performance of optimization techniques is badly affected by the introduction of

nonconvexities (multiplication among variables) to the system of equations.

4. Numerical singularities still arise  for cases in which the solution resides on a boundary. That

is the main reason for the assumption of nondegeneracy.

In general,  we are presenting this approach as a very favorable alternative when the

number of equations in each disjunctive term is small.

3 ILLUSTRATIVE EXAMPLES

We have represented and solved several examples of algebraic systems of disjunctive

equations found in the literature by using a complementarity formulation.  Appendix A presents

the complementarity equations (or a representative part of them) for each of those examples.

In examples 1 through 4  the disjunctive statements contain only two terms, and we

generated the complementarity equations by strictly using the formulation proposed in (17).  In

his work, Zaher (1995) solved  examples 1 and 3 as optimization problems, by defining an

objective function and an appropriate selection of the degrees of freedom.  In this work we solve

examples 1 and 3 as simulation problems by specifying fixed values to the appropriate variables

(free variables in the optimization) and removing the objective function. We could use the

complementarity formulation for an optimization scheme, but at this time we wanted to avoid the

separated issue of handling the optimization of a system containing bilinearities.

The degree of complexity increases in examples 5 and 6 since the disjunctive statements

contain three terms. In those cases, we added two slacks to the conditional equations in one of the

disjunctive terms which will allow some of the conditional equations to have a negative residual.
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In examples 5 and 6 we do not use the general formulation proposed for three-term disjunctions.

Instead, we use those examples to show how sometimes the specific structure of the disjunctive

statement can be used to simplify the resulting system of complementarity equations.

Where reported, the initial values for the variables are the same as those given in the

reference.  To solve the examples, we used ourASCEND solver which applies the modified

Levenberg-Marquardt algorithm given in Westerberg and Director (1979).  This method is

preferred because it is a least squares solver which  may help to overcome the numerical

singularities arising from the complementarity formulation. In all the cases the solution of only

one nonlinear system of equations  is required. Also, in all the examples the number of equations

in each disjunctive term  is very small, and,  as a consequence, the complexity of the equations

involving products among slack  variables is not as bad  as can be expected with problems of

larger size.

EXAMPLE 1 Fluid Transition (Zaher, 1995).

This example describes the flow of a compressible gas in an adiabatic frictional circular

pipe of constant diameter.  Nonsmooth functionality occurs due to the possible transition between

sonic-not sonic flow at the outlet of the pipe.  It corresponds to a simplest case of a conditional

model: the problem contains only one disjunction with only one equation in each term. The

alternatives for the solution of the problem are represented by:

in which one of the terms corresponds to sonic flow (Match numberMf=1) and the other to not

sonic flow (Pd=Pf). The equations describing the thermodynamics are omitted for simplicity and

can be found in Zaher (1995).

As we already mentioned,  Zaher (1995) reported the solution to this problem as an

optimization problem. We run simulations for values of the diameter of the pipe between 2 cm

and 9 cm, such that we could make sure that both of the alternative cases are reached by using the

complementarity representation.

Pd Pf– M f 1–<

M f 1– 0=

Pd Pf– M f 1–≥

Pd Pf– 0=
∨
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EXAMPLE 2 Phase Equilibria (Zaher, 1995).

An isothermal flash is applied to a ternary system involving benzene, ethanol and water.

According to the phase diagram of this mixture and, depending on the values of pressure and

temperature, three phases can be expected to exist simultaneously, an aqueous liquid phase, an

organic liquid phase, and a vapor phase. The existence or nonexistence of each phase can be

represented as a conditional statement. For instance, to represent the existence of the aqueous

phase, the following statement applies:

as obtained by Michelsen (1982) and Zaher(1995).  Since there are three possible phases, we

require three similar disjunctions to represent the behavior. There are only one equation in each

disjunction though and, therefore, only one complementarity equation for each of them is

required.

EXAMPLE 3 Heat Exchanger (Zaher, 1995).

A very detailed explanation of this example can be found in Zaher (1995).  It represents a

case in which a conditional model contains differential equations that have to be integrated. The

approach suggested is to discretize the differential equations and treat the problem  as a

conditional model with only algebraic equations. To accomplish this, Zaher (1995) introduced a

relay method: the point in the domain of integration where transition occurs is continuously

passed along, as a baton in a relay race, from one element to another by successive contractions

and expansions of the individual elements. Switching stations at which the analogous baton

transfer occurs must first be positioned. This example is introduced in Figure 5. Three finite

elements are chosen with one switching station.  To outline the three elements, four positions

referenced by the indices {0...3} are used. The domain of integration is transformed to the

dimensionless variableη which varies from zero to one. The difficulty with this model is that, in

addition to solving for the temperature profile, the dimension of the finite elements are to be

solved for as well.

yi
A

i C∈
∑ φA

+ 1<

φA
0=

yi
A

i C∈
∑ φA

+ 1≥

yi
A

i C∈
∑ 1=

∨
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Zaher (1995) shows that the three cases shown in Figure 5 can be represented as a

conditional model including the following disjunctive statement:

whereφ represents the fraction of the hot stream which is condensed andx is a vector representing

the composition of the condensation droplets.

FIGURE5 Alternative heat exchanger temperature profiles.
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In order to obtain an equivalent complementarity formulation, we start by recognizing that we can

decouple the previous disjunctive statement in two independent disjunctions:

and

We run simulations for values of area between 250 ft2 and 1104 ft2  and values of flowrates

between 250 lbmole/hr and 380 lbmole/hr, ranges analyzed by Zaher while finding an optimal

solution.

EXAMPLE 4  Pipeline Network (Bullard and Biegler, 1992)

Consider the pipe network shown in Figure 6 solved previously by Bullard and Biegler

(1992).  This problem can be described by the system of equations:

φ0
0=

η1
0=

xi
0

i C∈
∑ φ0

+ 1<

xi
0

i C∈
∑ 1=

xi
1

i C∈
∑ 1=

xi
0

i C∈
∑ φ0

+ 1≥

∨

φ1
0=

η2
0.5=

xi
2

i C∈
∑ φ1

+ 1<

xi
2

i C∈
∑ 1=

η1
0.5=

xi
2

i C∈
∑ φ1

+ 1≥

∨

Qij
j

∑ Qji
j

∑+ wi=

Hij K sign Qij( ) Qij
2⋅ ⋅=

K Qij
2⋅ 0=

Hij 0≤

K Qij
2⋅ Hij=

Hij 0≥
∨

Qij 0≥

node∀ i

arc∀ ij without valve

arc∀ ij with valve

arc∀ ij with valve

Hij Pi Pj–= arc∀ ij
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The first equation is a flow balance around each node, the second  is the Hazen-Williams relation

for pipes with no valve, and the third is the relation between pressure drop and flowrate.  Notice

that an equivalent disjunctive representation for the Hazen-Williams relations can be given by :

All pipes are 100 ft long and 6 in diameter, and the fluid is water:ρ = 62.4/lbm/ft3, µ = 1

cP andε = 0.01 in. Pressures and inflow/outflow rates specifications are given in Table 1. Rates

not specified are equal to zero (except the one in node 17 which is an unknown).  Pressures not

specified are unknowns in the problem. The starting point and converged flowrates are given in

Table 2.

FIGURE6 Pipe network with five check valves

Hij K– Qij
2⋅=

Qij 0≤

Hij K Qij
2⋅=

Qij 0≥
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EXAMPLE 5  Simple L-V Flash Calculation (King, 1980)

This situation corresponds to a simple equilibrium calculation as given by King (1980).

Basically, the problem consists of finding a solution to the well known Rachford-Rice equation:

In the presence of two phases in equilibrium, the iterative calculation involves applying a

convergence procedure until a value of V/F is found such thatf(V/F) = 0.  However, it may well

happen that the specifications of the problem do not correspond to a system with two phases

present. For the case of a Liquid-Vapor equilibrium, King proposes the following criteria to

differentiate   among  the  different   cases: f(V/F)  will be positive  at   V/F=0  and  negative  at

(V/F)=1. Therefore, iff(V/F) is negative at V/F=0, the system is subcooled liquid. Iff(V/F) is

positive at V/F=1, the system is superheated vapor. This behavior can be represented in term of

the following disjunctive statement:

Table 1: Pressures and inflow/outflow rates for Example 4

Node No. Pressure P (psig) Inflow rate w (gpm)

1 897.6

7           1570.9

11           -897.6

17 0

20           -448.8

22             673.2

xi

zi

Ki 1–( ) V F⁄( )⋅ 1+
--------------------------------------------------= yi

Ki zi⋅
Ki 1–( ) V F⁄( )⋅ 1+

--------------------------------------------------=

yi
i

∑ xi
i

∑– 0= f V F⁄( )
zi Ki 1–( )⋅

Ki 1–( ) V F⁄( )⋅ 1+
--------------------------------------------------

i
∑ 0= =
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Table 2: Starting point and converged flowrates for Example 4

Pipe No.
Estimated flow

Q(0) (gpm)
Converged flow

Q* (gpm)

1           -48.5         -223.345

2         -640.7         -894.840

3          393.2          520.818

4          538.9          883.254

5          -32.3         -435.573

6          490.2          180.240

7          649.2          533.254

8          904.7          877.652

9          112.2          315.876

10          232.5          602.421

11          402.3          541.160

12         -420.4         -229.091

13          687.3          585.972

14          621.7          701.302

15         -719.2             0.0

16            52.7         -273.643

17         1199.0       -1303.723

18          305.4          226.105

19          582.8          943.137

20         -247.5         -374.022

21         -145.7         -362.435

22         -684.6         -954.723

23          293.6          504.804

24         -261.3         -255.153

25         -229.0          180.420

26         -395.1          407.123

27         -254.8         -344.398

28         -268.9         -216.346

29         -890.6         -917.648

30          120.3          286.546

31            -8.1          132.925

32         -344.7             0.0

33          473.1          356.88

34         -206.2             0.0

35         -275.0         -443.768

36          351.5            44.552

37         -481.2         -443.768

38          353.9          317.815



ILLUSTRATIVE EXAMPLES

24

This disjunction include three disjunctive terms, but a complementarity is still possible.

For testing the proposed formulation, we took a mixture 20% of butane, 50% of pentane and 20 %

of hexane, at 10 atm, and performed simulations for a broad range of temperatures (150 K to 890

K) to ensure the convergence of the method for the three possible cases.

EXAMPLE 6  Linear Mass Balance (Grossmann and Turkay, 1996)

This example, illustrated in Figure 7, represents a problem in which each of the six

processing units interconnected in a flowsheet has three operating regions, each region with

different mass balance coefficient in terms of the main product flowrate. The mass balance

coefficients and the bounds for each of the flowrates are shown in Table 3.

FIGURE7 Processing Units for Example 6
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unit operation 1, we have:

As a consequence of having three disjunctive terms, the formulation once again becomes

complicated. Five out of the six units (those containing two equations in each term) can be

represented by similar sets of disjunctive equations. For the case of unit 6 (which has only one

equation in each disjunctive term), the disjunctive statement and the complementarity equations

Table 3: Material balance equations for units in Example 6

Unit
Main

Product
Interval

Lower
Bound

Upper
Bound

Mass Balance
Coefficient

1 F7 1

2

3

0

50

80

50

80

150

F6:  1.10     F10:   0.05

        1.15              0.10

        1.20              0.20

2 F8 1

2

3

0

50

100

50

100

150

F2:   0.50     F7:   0.80

         0.47             0.75

         0.45             0.70

3 F4 1

2

3

0

50

110

50

110

180

F8:    1.70    F9:   0.67

         1.80             0.70

         1.87             0.75

4 F13 1

2

3

0

50

90

50

90

140

F3:    1.18   F12:   0.23

         1.15             0.25

         1.10             0.30

5 F14 1

2

3

0

40

80

40

80

130

F11:  0.37    F13:  1.20

         0.35             1.25

         0.30             1.30

6 F5 1

2

3

0

20

45

20

45

75

F14:  1.15

         1.10

         1.02

F6 1.1 F7⋅=

F10 0.05 F7⋅=

0 F7 50≤ ≤

F6 1.15 F7⋅=

F10 0.1 F7⋅=

50 F7 80≤ ≤

F6 1.2 F7⋅=

F6 0.2 F7⋅=

80 F7 150≤ ≤

∨ ∨
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are similar from those obtained for the example of the simple flash calculation:

Even though the original problem is linear, the introduction of the complementarity

equations leaves us with a nonlinear system of equations. The starting point used in this work  and

the converged values of the flowrates are shown in Table 4.

3.1 ANALYSIS OF THE RESULTS

The number of iterations that we used to obtained the solution of each of these examples is

shown in Table 5.   Some observations are:

Table 4: Starting point and converged flowrates for Example 6.

Stream
Starting Point
(lbmole/hr)

Converged Value
(lbmole/hr)

F1 47.50 47.5000

F2 21.25 19.8549

F3 69.00 57.7545

F4 25.00 23.3587

F5 50.00 36.5246

F6 37.50 34.9447

F7 34.00 31.7679

F8 52.50 39.7099

F9 16.75 15.6504

F10 1.700 1.5884

F11 16.80 14.0620

F12 15.00 12.5553

F13 60.00 50.2213

F14 48.00 40.1770

F14 1.15 F5⋅=

0 F5 20≤ ≤

F14 1.10 F5⋅=

20 F5 45≤ ≤

F14 1.02 F5⋅=

45 F5 75≤ ≤
∨ ∨
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• The fixed parameters and constants for Examples 1 through 3 are the same as those giving by

Zaher (1995).

• The number of iteration for the fluid transition problem corresponds to a diameter of 5 cm. For

the example of the heat exchanger the number of iterations reported is for an area equal to

379.12 ft2 and flowrate of cooling water equal to 1104.31 lbmole/hr. There is no special

reason for the selection of those values . We just wanted to report a particular instance of the

performance since the solution to these examples in the reference corresponds to optimization

problems.

• For the simple flash calculation, the number of iterations reported is for the value of

temperature of 200 K (liquid phase region). As before, there is no reason for using that value.

The number of iterations was roughly of the same order for the rest of values of temperature.

Since the hardware and the technique that we are using to get the solution is different, we

are comparing neither time nor number of iterations with other works.  Still we consider it

important to make remarks about some differences of the alternative approaches.

In the example of the pipeline network, the result of the complementarity representation is

one nonlinear system containing  250 equations, 76 of them containing 2 bilinear terms. In the

same example, the number of boundaries in the boundary crossing algorithm (Zaher, 1991) would

be 38 (that means 238=2.748779 x 1011 possible subregions) and the nonlinear system to be

Table 5: Examples of algebraic systems of disjunctive equations found in the literature

Example Reference
Number of
Equations

Number of
Disjunctions

Number of
Complementarity

Equations
 Iterations

Fluid Transition Zaher (1995) 7 1 1 8

Phase Equilibria Zaher (1995) 18 3 3 10

Heat exchanger Zaher (1995) 56 2 4 11

Pipeline network Bullard and
Biegler (1992)

250 38 76 24

Simple L-V flash King (1980) 23 1 4 25

Linear mass balance Grossmann and
Turkay (1996)

81 6 34 25
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solved in every subregion would contain 98 equations.  The combinatorial complications present

in examples like this clearly represents a disadvantage for  the boundary crossing algorithm. On

the other hand, the reverse situation is also possible, and the boundary crossing may be clearly a

better option  than the complementarity formulation. For example, in a problem with only one

disjunction, but 20 equations in each of the terms of the disjunction, we may not be able to solve a

nonlinear system in which 20 of the equations contain 20 bilinear terms each.  However, the

number of subregions in the boundary crossing algorithm would be only 2, and the possibility of

applying this algorithm efficiently would be much greater.

In the example of the linear mass balance, Turkay and Grossmann (1996) solve the

problem by using a mixed-integer  approach. The resulting MILP contains 18 binary variables, 66

continuous variables and 89 linear equations.  In the complementarity formulation, the nonlinear

system contains 81 equations, 47 are linear, but the remaining 34 contain multiplications among

residuals. The size of the problem is very similar, the difference will be in either using a branch

and bound search in the MILP or dealing with the complementarity equations in the solution of

one square nonlinear system of equations.

4 CONCLUSIONS

We have proposed and tested a new representation of conditional models as

complementarity problems. In order to obtain the complementarity  formulation, we rely on the

assumption that the sets of conditional equations are of the formr(x):Rn
+ Rn and, therefore,

the disjunctive statements can be represented in terms of positive residual variables.  We show that

the formulation described in this paper does not introduce spurious solutions to the problem, and,

under the assumption of nondegeneracy, it will not introduce numerical singularities to the

Jacobian matrix.  Also, for disjunctive statements having more than two terms, examples 5 and 6

show that sometimes it is possible to obtain a far less complex formulation than that obtained as a

general formulation by taking advantage of the structure of the disjunctive representation. The

number of iterations employed for all of the examples solved here makes the complementarity

approach appear as an interesting alternative. We also mentioned some of the weaknesses and

advantages of  this  approach.
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7 APPENDIX A

Complementarity Equations for the Examples presented in Section 3

Example 1  Fluid Transition (Zaher,1995).

A single complementarity equation is required. The definition of the positive residuals and

the complementarity equation is given by:

Since the problem contains only one condition in each disjunctive term, our complementarity

representation reduces to the standard complementarity formulation.

Example 2  Phase Equilibria (Zaher,1995).

The representation of the existence-non existence of each phase is given by the following

set of equations.

The complementarity equation is entirely the same as in Example 1.
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Example 3  Heat Exchanger (Zaher,1995).

Example 4  Pipeline Network (Bullard and Biegler, 1992).
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and

Example 5  Simple L-V Flash Calculation (King, 1980).

In this example, some of the residual variablesp appear in more than one disjunctive term

and a representation including an indexi for each disjunctive term could be confusing.  For that

reason,  we use the variablesp indexed in successive order as follows:

The disjunctive representation in terms of the residuals is:

Note that several conditions appear in two different disjunctive terms. We could generate

K Q
2⋅ ij p1

1
=

K Q
2⋅ ij Hij– p1

2
=

Hij p2
1

p2
2

–=

2)Arcs with check valve

p1
1

0=

p2
1

0=

p1
2

0=

p2
2

0=
∨

pj
i

0≥ i 1…2[ ]∈∀

p1
1

p1
2⋅ p2

1
p2

2⋅ 0=+

p1
1

p2
2⋅ p2

1
p1

2⋅ 0=+

j 1…2[ ]∈,

V F⁄ p1= V F⁄ R p2 p3–+= V F⁄ 1 p4–=

R p5 p6–= R 1 p7 p8–+=

p1 0=

p5 0=

p3 0=

p7 0=

p2 0=

p6 0=

p3 0=

p7 0=

p2 0=

p6 0=

p4 0=

p8 0=

∨ ∨

pj 0≥ j 1…8[ ]∈∀
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the complementarity equations as we described in section 2.  The formulation obtained would still

be consistent.  However, we are concerned with the complications in the convergence of this kind

of examples because the assumption of nondegeneracy does not hold and, therefore, numerical

singularities could arise during the solution of the nonlinear system of equations.

Searching for a simplification which could help us to solve the problem, we took

advantage of a very specific structure of the disjunctive representation given above. The following

structure can be identified:

and converting from Disjunctive Normal Form to Conjunctive Normal Form:

This derivation tells us that, in order to represent the three-term disjunctive term, we can use the

union of two-term disjunctions:

If we do that for this example, the number of terms in our complementarity representation

decreases significantly: strictly, a disjunction with three terms and four conditions in each term

requires 43= 64 trilinear terms for its representation. On the other hand, the previous derivation

tells us that 12 bilinear terms are enough for the representation of this particular problem.

We still need to find out how to distribute the 12 bilinear terms through the 4

complementarity equations required to obtain a square system of equations.  Such a distribution is

not unique, and we can use any set of complementarity equations which does not introduce

numerical singularities (any set in which it can be proved that there is a possible pivot for each

A

B

C

B

C

D
∨ ∨ A B∧( ) C B∧( ) C D∧( )∨ ∨

A B∧( ) C B∧( ) C D∧( )∨ ∨ A C∨( ) B C∨( ) B D∨( )∧ ∧

p1 0=

p5 0=

p2 0=

p6 0=
∨

 
 
 
 
 

p3 0=

p7 0=

p2 0=

p6 0=
∨

 
 
 
 
 

p3 0=

p7 0=

p4 0=

p8 0=
∨

 
 
 
 
 

∧ ∧

p1 p2⋅ p5 p6⋅+ 0=

p1 p6⋅ p5 p2⋅+ 0=
 
 
 
 
 

p3 p2⋅ p7 p6⋅+ 0=

p3 p6⋅ p7 p2⋅+ 0=
 
 
 
 
 

p3 p4⋅ p7 p8⋅+ 0=

p3 p8⋅ p7 p4⋅+ 0=
 
 
 
 
 

∧ ∧
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complementarity equation in the Jacobian matrix) to the system. The distribution can be as simple

as the following:

in which the terms of two disjunctions are joined to generate two of the equations, or a more

thoughtful one like:

in which the complementarity pairs are arranged to avoid repeated indices in the complementarity

equations.  When incorporated with the rest of the system, both sets of complementarity equations

provide the correct solution to the problem. The number of iterations that we reported in this

paper corresponds to the straightforward formulation given first.

Example 6  Linear Mass Balance (Grossmann and Turkay, 1996).

Once again, this example has disjunctions with 3 disjunctive terms.  We only show the

complementarity equations for unit operation 1. The equations for unit operation 2 to 5 are very

similar to the equations generated for this one. Unit operation 6 has a representation similar to the

disjunction of the Example 5. The simplification process for this example is the same as that given

pj 0≥ j 1…8[ ]∈∀

p3 p2⋅ p7 p6⋅ p3 p4⋅ p7 p8⋅+ + + 0=

p3 p6⋅ p7 p2⋅ p3 p8⋅ p7 p4⋅+ + + 0=

p1 p2⋅ p5 p6⋅+ 0=

p1 p6⋅ p5 p2⋅+ 0=

pj 0≥ j 1…8[ ]∈∀

p1 p6⋅ p3 p2⋅ p7 p4⋅ 0=+ +

p1 p2⋅ p3 p6⋅ p7 p8⋅ 0=+ +

p5 p2⋅ p7 p6⋅ p3 p4⋅ 0=+ +

p5 p6⋅ p7 p2⋅ p3 p8⋅ 0=+ +
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in Example 5. Definition of the residual variables:

Disjunctive statement in terms of the residual variables:

After converting to Conjunctive Normal Form:

One possible set of Complementarity equations:

The number of iterations reported in this paper corresponds to the solution of the system of

F6 1.1 F7⋅ p1+=

F10 0.05 F7⋅ p5+=

F6 1.5 F7 p2 p3–+⋅=

F10 0.1 F7 p6 p7–+⋅=

F6 1.2 F7 p4–⋅=

F10 0.2 F7 p8–⋅=

F7 50 p9 p10–+= F7 80 p11 p12–+=

p1 0=

p5 0=

p9 0=

p2 0=

p6 0=

p11 0=

p3 0=

p7 0=

p10 0=

p2 0=

p6 0=

p11 0=

p3 0=

p7 0=

p10 0=

p4 0=

p8 0=

p12 0=

∨ ∨

p1 0=

p5 0=

p9 0=

p3 0=

p7 0=

p10 0=

∨

 
 
 
 
 
 
 

p2 0=

p6 0=

p11 0=

p3 0=

p7 0=

p10 0=

∨

 
 
 
 
 
 
 

p2 0=

p6 0=

p11 0=

p4 0=

p8 0=

p12 0=

∨

 
 
 
 
 
 
 

∧ ∧

p5 p10⋅ p6 p12⋅ p11 p7⋅ p2 p3⋅+ + + 0=

p5 p7⋅ p6 p8⋅ p11 p3⋅ p2 p10⋅+ + + 0=

p5 p3⋅ p6 p4⋅ p11 p10⋅ p2 p7⋅+ + + 0=

p1 p10⋅ p2 p12⋅ p9 p3⋅ p6 p7 p11 p8⋅+⋅+ + + 0=

p1 p7⋅ p2 p8⋅ p9 p10⋅ p6 p3 p11 p4⋅+⋅+ + + 0=

p1 p3⋅ p2 p4⋅ p9 p7⋅ p6 p10 p11 p12⋅+⋅+ + + 0=

pj 0≥ j 1…12[ ]∈∀
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equations including this set of complementarity equations, but some other alternative sets were

also successfully used to obtain the solution to the problem


